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Simple Summary: After domestication in specific regions, livestock followed human migrations and
colonized the whole world. During this population expansion, human and natural selection, together
with demographic events, molded the livestock genome leading to local breeds and populations able to
produce milk, meat, wool and tractive power in many different agro-climatic conditions. The climate
is changing, with temperatures and the frequency of extreme climatic events increasing, which affects
livestock welfare and production efficiency, particularly of the highly productive breeds. Genomics is now
able to explore the DNA of local breeds adapted to extreme environments in search of genes carrying
signatures of selection for adaptation. This review summarizes methods used to accomplish this task,
giving examples of results achieved and perspectives for future breeding.

Abstract: Livestock radiated out from domestication centres to most regions of the world, gradually
adapting to diverse environments, from very hot to sub-zero temperatures and from wet and humid
conditions to deserts. The climate is changing; generally global temperature is increasing, although there
are also more extreme cold periods, storms, and higher solar radiation. These changes impact livestock
welfare and productivity. This review describes advances in the methodology for studying livestock
genomes and the impact of the environment on animal production, giving examples of discoveries made.
Sequencing livestock genomes has facilitated genome-wide association studies to localize genes controlling
many traits, and population genetics has identified genomic regions under selection or introgressed
from one breed into another to improve production or facilitate adaptation. Landscape genomics, which
combines global positioning and genomics, has identified genomic features that enable animals to adapt to
local environments. Combining the advances in genomics and methods for predicting changes in climate
is generating an explosion of data which calls for innovations in the way big data sets are treated. Artificial
intelligence and machine learning are now being used to study the interactions between the genome and
the environment to identify historic effects on the genome and to model future scenarios.
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1. Introduction

Climate change is generally causing an increase in global temperatures (see Box 1).
The most recent estimates [1] suggest that a 1.5 ◦C warming compared to the 1850–1900
baseline will be reached in the second half of the current decade, but, in addition, there are
longer cold periods and increased levels of solar radiation [2–6] (Figure 1).
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These changes affect both extensive and intensive farming systems [7,8]. The impact
of environmental changes on animals affects their health, growth, and fertility as well as the
diseases to which they are exposed. In addition, availability and types of feed may change
because of the impact of the climate on the production and quality of grains, pasture and
forage crops [9,10], which will affect nutrition as well as animal health and metabolism [11].
Livestock can adapt to gradual changes in environmental temperature. However, rapid
changes or extended periods of extreme conditions reduce their welfare and productivity
and are potentially life threatening. Therefore, the current rapid rise in global temperature
is increasingly exposing livestock to stress in many countries. Some local breeds that have
been kept in areas with adverse conditions, such as high temperature and humidity or
drought, have become adapted over many generations; these breeds are an invaluable
resource for research and breeding. It is urgent to understand the biological mechanisms
underlying their adaptability, and, in particular, to identify genomic regions and genes that
control such mechanisms in order to facilitate the rapid selection of livestock resilient to
climate change. This review focuses on ruminants and on the current state of knowledge
on genetics controlling adaptation.

2. Impacts of Climate Change on Livestock

With increasing global temperatures, more productive livestock are at greater risk
(see Box 2), because they have higher feed intake and feed consumption, which is directly
related to animal heat production [12]. Animals eat less to counteract high temperatures,
and nutrients are prioritized to support maintenance rather than production and repro-
duction. In the central U.S., for example, severe losses of beef cattle kept in feedlots have
been reported because of heat waves in summer and extreme snowstorms and wind in
winter [13]. Climate related economic losses as a result of animal death and reduced per-
formance have been seen [14]. Cattle, sheep, pigs and chickens reduce their feed intake by
3–5% for each unit increase in temperature above 30 ◦C [15]. Reproduction is particularly
affected. Hahn [16] reported that conception rates in dairy cows are reduced by 4.6% per
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unit change above 70 in the temperature humidity index (THI) [17]. For beef cattle kept
in range or pasture management systems, a decrease in pregnancy rates of 3.2% and 3.5%
was observed for each unit increase in average THI above 70 and an increase in average
temperature above 23.4 ◦C, respectively. Among environmental variables, temperature has
the greatest effect on cow pregnancy rates [18].

Climate change further includes altered rainfall patterns that, combined with ge-
ographical factors such as soil type, affect crop production [19–21]. Drought reduces
biomass [22], increases lignin accumulation in plant tissues, and reduces proteins, resulting
in less digestible forages [23] and insufficient energy to meet livestock requirements [24,25].
Increased occurrence of prolonged drought is therefore of great concern to pasture-based
livestock systems [23], especially those in environments which cannot support arable
production [26].

Climate change influences the distribution of animal pathogen vectors and parasite
range [27] which, together with the decreased immune response of animals under stress
(triggered by cortisol), exposes livestock to higher risks of disease. Early springs, warmer
winters and changes in rainfall distribution affect the seasons in which pathogens, parasites
and vectors are present, potentially increasing proliferation and survival of these organisms.
Bluetongue recently spread northward from Africa to Europe [28] as a consequence of
climate-driven ecosystem changes and the associated expansion of the geographic range
of the insect Culicoides imicola, the vector of the virus [29]. Other vectors such as the tick
Rhipicephalus appendiculatus, which is the host for the protozoan pathogen Theileria parva,
are predicted to shift their geographic range due to climate change, moving southward
from central sub-Saharan Africa towards southern Africa [30]. Higher temperatures in
Europe have increased parasite burdens such as helminths, with a shift from species
traditionally found in temperate zones such as Ostertagia ostertagi to tropically adapted
species, particularly Haemonchus contortus [31,32]. In addition to temperature, increased
rainfall and humidity have affected the distribution of parasites. Leptospirosis in humans
has been linked to transmission from livestock, with many outbreaks reported following
extreme weather events around the world [33].

Box 1. Climate Data and Tools.

High resolution meteorological data are used to evaluate climate trends and variability and to
predict the frequency of extreme events. Where meteorological data are not available, advanced
climate modelling produces “Climate Reanalysis” datasets for a comprehensive description of the
climate in three-dimensional grids. “Climate Reanalysis” has become an essential tool for modelling
meteorological data to provide services to sectors dependent on climate assessments, forecasts and
projections, including ecosystem management, agriculture, and livestock farming [34,35]. Climate
modelling is also able to produce short- to long-term climate predictions (months to a few decades
ahead), and projections extending over many decades at the global level.
Bioclimatic indicators allow the ever–increasing climate datasets to be combined and condensed
and are valuable for both expert and non-expert users. Bioclimatic indicators from several global
datasets are available from WorldClim [36], CHELSA [37], CliMond [38], ecoClimate [39], EN-
VIREM [40], MERRAclim [41], CMCC-BioclimInd [42] and the latest, KGClim [43]. The FAO (Food
and Agriculture Organization of the United Nations), provides Global Agro-Ecological Zoning
(GAEZ) indicators of the likely variation in agricultural resources over time. Agrometeorological
indicators from 1979 to the present and agro-climatic indicators from 1951 to 2099 derived from
Climate Reanalysis and projections are available from Climate Change Service (C3S) of the Coperni-
cus programme [44]. Frequency, duration, timing and severity of extreme weather events can be
calculated using indicators and indices for climate extremes such as those defined by the Expert
Team on Climate Change Detection Monitoring and Indices (ETCCDI) [45,46].

3. Becoming Adapted

Archaeological evidence and molecular analysis of present-day DNA variation sug-
gest that livestock were domesticated in specific regions of different continents. The Fertile
Crescent region in Southwest Asia is one of these. Here the wild progenitors of cattle, sheep,
goats and pigs progressively adapted to a closer relationship with humans and finally
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became dependent on human care. Archaeozoological and mitochondrial DNA diversity
data have confirmed that domestication of these species occurred in a climatically homoge-
neous area around the Fertile Crescent, comprising South-eastern Anatolia and the Iranian
Zagros Mountains [47–49]. After domestication, livestock followed human migrations and,
with agricultural expansion, colonized the whole world [50,51]. Technological advances
have facilitated the study of ancient DNA (aDNA) from well–preserved archaeological
remains, which is shedding light on the spatiotemporal dynamics of domestication and on
the physiological and neurobiological changes that livestock species underwent during the
transition from the wild to a domestic existence, as well as on the subsequent adaptation to
different environments and selection for functional traits [52]. For example, these studies,
have shown that cattle and goat domestication took place over relatively large geographical
areas and extended time frames [53–55], with frequent events of admixture and introgres-
sion, sometimes from several wild relative species [53,56]. Over millennia livestock species
have adapted to thrive in a range of environments, with different temperature, humidity,
water and fodder availability and quality, pathogen and parasite challenges, and also to
satisfy human needs for food, wool, fibre and tractive power.

At the genetic level, signals of adaptive changes driven by domestication have been
found in genes related to nervous system development [57,58] including kit ligand (KITLG),
the treacle ribosome biogenesis factor 1 (TCOF1), and fibroblast growth factor receptor 1
(FGFR1) [57]. Other signatures of selection, or of adaptive introgression from wild relatives,
have been found in genes implicated in adaptation to feed and farming regimes. A variant
in the cytochrome P450 2C19 gene (CYP2C19) has been under positive selection in goats.
CYP2C19 is a member of the CYP2C subfamily of the cytochrome P450 superfamily of
genes [59] which confers protection against a mycotoxin produced by Fusarium spp. fungi
in cereals [54]. Therefore, the increased frequency of the variant is most likely a response to
an increasingly cereal-based diet contained in waste by-products. Alleles that may have
been introgressed into domesticated goats from Capra caucasica [60], a West Caucasian
tur–like species, have been found in a genomic region harbouring genes that affect immune
function and parasite resistance, including SERPINB3, SERPINB4, CD1B, COL4A4, BPI,
MAN2A1, and CD2AP. In particular, the mucin 6 oligomeric mucus/gel–forming gene
(MUC6), which encodes a gastro-intestinally secreted mucin, is nearly fixed in goats for
the Tur–derived haplotype, which confers enhanced immune resistance to gastrointestinal
pathogens [56]. The fixation of this introgressed variant may be the consequence of the
adaptive advantage it provided in farm environments, where there is increased exposure
to parasites and disease [56].

Recently, the characterization of the paleo-epigenome and paleo-microbiomes of do-
mestic species have facilitated the exploration of their role in the adaptation of mammalian
livestock to their environment [61]. Data on the epigenomic profiles or microbiota com-
position in ancient livestock may provide information on diet, lifestyle, health status and
exposure to stressors, and thus help us to explore the mechanisms of adaptation and
interaction with the environment on a micro-evolutionary scale.

Animals adapt to the environments in which they live and to external stress by
acclimation to a particular stressor or to a range of stressors [62,63]. Adaptation can
be crucial for survival, but often negatively affects the productivity and profitability of
livestock systems. The ability to adapt depends in part on the flexibility of behavioral
traits [64] and in part on morphological and physiological changes that better adapt animals
for survival. For example, about 25% of sheep in the world are fat tail or fat rump breeds
that are adapted to harsh semi-arid desert conditions where food availability is sporadic.
The fat tail or rump acts as a store, to enable the animals to survive long periods when food
is in short supply [65].

Cattle adapted to prolonged heat stress have increased hemoglobin and red cell num-
bers [66], which may also protect them against blood borne parasites such as theileriosis.
Bos taurus taurus cattle that have been raised over many generations in cool and temperate
climates have long hair, subcutaneous fat, and often a dark coat colour. In contrast, Bos
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taurus indicus cattle that were originally from hotter tropical climates have short hair, little
subcutaneous fat, low metabolism, and a body conformation to aid heat dispersion, with
high surface to volume ratio, large ears and loose skin, especially around the dewlap [67,68].
To increase performance while maintaining environmental resilience, crosses between tau-
rine and indicine cattle have been developed [69]. The crossbred animals show better
adaptation to high temperature and humidity, and to parasites, e.g., resistance to Boophilus
microplus ticks increases in proportion to Bos taurus indicus ancestry in the cross [70].

Box 2. Heat Stress Indicators.

The level of heat stress experienced by an animal is the result of a combination of air temperature,
relative humidity [71] and other climate factors including wind speed and solar radiation [72].
Depending on the management system, these parameters may make different contributions to
the risk of thermal stress [73]. Environmental parameters can be measured and used to construct
indices and set thresholds to define risk situations.
Most of the indices defining thermal stress risk have been developed for cattle, especially for
dairy cows that are particularly susceptible to high temperatures. The Temperature Humidity
Index (THI) [17] takes into account the effect of air temperature and humidity. THI was originally
developed as a general indicator of heat stress for humans, but today is also applied to livestock.
Over the years, the model and threshold values used to define heat stress conditions have been
modified [73], and corrections are now applied if cooling systems are used in the housing [74]. THI
does not take into account the cumulative effect of high temperature [73] or the impact of wind
speed and solar radiation, which are important when estimating the level of heat stress experienced
by an animal. The Equivalent Temperature Index (ETI) includes air speed in the formula [75],
although solar radiation is not considered [73]. The THI adjusted (THIadj) index considers both
the wind speed and the solar radiation, as well as breed and coat colour [76]. The Respiration Rate
index (RR) is an extension of THIadj that also takes into account whether animals are in a shaded
area or under the sun [77].
Other prediction models that have been developed to overcome the limitations of THI include the
heat load index (HLI), which incorporates “black globe” temperature measurements substituting air
temperature, animal factors (genotype, coat colour and health status) and management strategies
(shade availability, days on feed, manure management and temperature of drinking water). These
factors are used to modify the threshold to define the heat stress, and combined with factors to
account for location-specific variables in different geographic areas [78]. HLI is considered a better
predictor than THI as it includes the interaction between climatic variables and animal thermal
exchange mechanisms [78]. The Accumulate Heat Load Unit (AHLU) index, based on HLI, is a
measure of the animal’s heat load balance [79]. The AHLU may increase or decrease over time
depending on HLI values. A zero AHLU value indicates that the animal is in thermal balance [79].
The HLI has also been extended to create a Comprehensive Climate Index (CCI) that can also be
used under cold conditions [80].
A comprehensive review of models for predicting heat stress response in livestock is given in
Rashamol et al. [78].

Senepol cattle were developed on the island of St Croix to create a breed that was
polled, easily managed and tolerant of the tropical environment by crossing red polled
taurine cattle with African Zebu cattle [81]. Some of these cattle have very short hair and
reduced follicle density, giving the phenotype referred to as “SLICK”. SLICK is controlled
by a single genetic locus and carriers of the Slick variant have lower core temperature than
non-SLICK contemporaries [82]. Interestingly, the effect of SLICK is most likely through
increased sweat production rather than the decrease in hair length and density [83]. The
SLICK variant in Senepol cattle was initially mapped to chromosome 20 [84], and later
the causative variation was identified in the prolactin receptor gene (PRLR). A single base
deletion in exon 10 causes a frameshift that introduces a stop codon and results in the
truncation of the protein [85]. Other criollo cattle breeds, such as Carora and Limonero,
that were brought to the Americas from Spain 500 years ago [86] display a similar SLICK
phenotype. However, these breeds do not carry the same prolactin variant that was
identified in the Senepol cattle, although a genome-wide association analysis located the
causative variant in or near to PLRL. DNA sequencing of SLICK Limonero cattle revealed
three variants within the prolactin receptor gene that create premature stop codons in exon
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11, one of which is also found in SLICK Carora cattle [87]. Recently, three novel variants
were discovered in the PLRL gene in six Caribbean Basin cattle breeds. All create premature
stop codons and increase heat tolerance. The occurrence of mutations in the prolactin
receptor in several cattle breeds that are adapted to tropical climates and that have distinct
evolutionary histories is unlikely to be by chance. Indeed, prolactin levels have been shown
to be involved in thermoregulation in humans [88], showing that certain physiological
processes and specific genes can be targeted by environmental pressure. The SLICK variant
has now been introgressed into other breeds, including the highly productive Holstein
dairy breed, creating more heat tolerant animals [89].

Nevertheless, adaptation generally requires changes in the combination of alleles of
many genes; for example, the genomic analysis of admixture between Bos taurus taurus
and Zebu (Bos taurus indicus cattle) in Africa showed that more than 150 loci were under
selection for local adaptation [90]. The ability of livestock to successfully adapt to extreme
climatic conditions and to tolerate a wide range of parasites has resulted in local popula-
tions with specific characteristics. These populations are valuable resources that, if well
characterized, could be exploited to create breeds suited to new conditions arising from
climate change.

Box 3. The Genome and Genomics.

The publication of the human genome sequence in 2001 [91] was a landmark that opened new
opportunities in molecular genetics. The same approach that was used to sequence the human
genome was used to produce draft sequences for the major livestock species; the first was the
chicken in 2004 [92], followed by the cow in 2009 [93], then the pig [94], sheep [95] and goat [96] in
2012. These genomes became references against which DNA and RNA sequences from these species
were aligned and compared. With the rapidly advancing sequencing technologies, which progressed
from automated Sanger sequencing to next-generation high throughput short read sequencing [97],
large numbers of individuals were sequenced at low resolution. Alignment of these sequences
with the reference genomes revealed huge numbers of variations among individuals, in particular,
Single Nucleotide Polymorphisms (SNP). This SNP data led to the development of genome-wide
genotyping panels. A range of low (few thousand) to high (many hundred thousand) density SNP
panels is commercially available, including some targeted to specific traits, and others that include
SNP for several species to reduce costs of genotyping. Knowledge of the genome sequence from
large numbers of individuals in a population enables low density SNP genotype data to be used to
estimate higher density genotypes by “imputation” [98].
The analysis of phenotype and genotype in genome-wide association studies enables genetic loci
with a major effect on the phenotype to be identified (e.g., [99–101]). In some cases the genes and
causative polymorphisms controlling variations in target traits have been identified (e.g., [102]).
Perhaps the most important advance coming from the availability of genome-wide SNP panels
is that the idea of genome-based selection envisioned by Meuwissen and colleagues more than a
decade ago has now been realized [103]. Other applications of the SNP panels include the analysis
of population structure, history and diversity (e.g., [104–106] to guide conservation strategies [107]
and the identification of regions of the genome that are under selection (e.g., [108]).
Next generation sequencing (NGS) has also facilitated the study of gene expression by enabling the
analysis of the whole transcriptome [109]. Depending on how samples are processed and analysed,
this approach can examine the expression of genes (e.g., [110,111]), variations in splice sites [112],
and non-coding RNAs [113,114] as well as short, micro-RNAs [115] that have a regulatory role.
Further advances in sequencing technology are opening new opportunities. Long read, single
molecule sequencing has enabled haplotype resolved genome sequences to be produced by sep-
arating the sequence reads originating from the maternally and paternally inherited chromo-
some [116,117]. Long read technologies such as Pacific Biosciences and Oxford Nanopore can
produce full length sequences of transcripts to reveal isoforms present in different tissues or diverse
physiological states. These technologies are also able to distinguish modified bases in the DNA,
specifically methylation, in order to examine epigenetic patterns directly and explore the regulation
of gene expression [118]. The Functional Annotation of Animal Genomes Consortium [119] is
assembling data on genome structure, expression, and regulation using a range of new technologies.
For an extensive review of the state of livestock genomics see Georges et al. [120].
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4. Seeking Adaptive Genes

Several molecular genetic approaches have been used to identify adaptation-related
genes. Genome wide association studies (GWAS) use phenotypes related to adaptation
recorded directly on the animals. Landscape Genomics approaches use environmental
variables as proxies for phenotypes. Other methods analyse the patterns of genomic
diversity within and between populations and the level of admixture in specific genomic
regions to identify selection signatures of adaptation. These approaches use genomic tools
that may focus on individual loci through to whole genomic sequence analyses (see Box 3)
and dedicated software (Table 1).

4.1. Genome-Wide Association Studies

Genome-wide association studies (GWAS) identify the association between variations
in the genome, the genotype, with variations in phenotype displayed by individual animals
belonging to a same breed or population. GWAS therefore requires both genotype and
phenotype data on each individual [121,122]. Fulfilling such conditions is difficult for
complex phenotypes, and not always feasible when the target population is small or
isolated [123], which is often the case in adaptation studies. Moreover, costs for genotyping
and trait recording represents a further hurdle in reaching an adequate sample size. For
these reasons, GWAS carried out in livestock to understand the genetic control of complex
traits, are invariably low powered and results between studies on the same traits are often
inconsistent. In addition, the genetic associations identified are likely to differ depending
on the way that a trait is measured, the genetic background and the environment. Livestock
GWAS have primarily been used to identify genetic variants associated with specific
production traits or disease responses [124]. GWAS that identify the genes controlling
climate adaptation traits (e.g., efficient thermoregulation, feed utilization, and immunity)
would accelerate selection for animals more resilient to climatic challenges [125].

Several statistical tests have been applied to identify marker–trait associations in
GWAS, from single marker regression, to mixed model and Bayesian approaches that use
different marker effect distributions as prior information, to haplotype based GWAS [126].
In all cases, corrections have to be applied for multiple testing and for population structure
in order to avoid a high number of false positives. As most traits involved in adaptation
are highly complex and have a low to moderate heritability, a large cohort of animals has
to be investigated to reach a sufficient statistical power in GWAS. [127,128].

A GWAS of cattle indigenous to Benin [99] identified several potential candidate genes
associated with stress and immune response (PTAFR, PBMR1, ADAM, TS12), feed effi-
ciency (MEGF11, SLC16A4, CCDC117), and conformation and growth (VEPH1, CNTNAP5,
GYPC). The study of cold stress in Siberian cattle breeds identified two candidate genes
(MSANTD4 and GRIA4) on chromosome 15, putatively involved in cold shock response
and body thermoregulation [100]. GWAS in taurine, indicine and cross-bred cattle iden-
tified PLAG1 (BTA14), PLRL (BTA20) and MSRB3 (BTA5) as candidate genes for several
traits important for adaptation to extensive tropical environments [101]. A GWAS of the
Frizarta dairy sheep breed, which is adapted to a high relative humidity environment,
identified 39 candidate genes associated with body size traits including TP53, BMPR1A,
PIK3R5, RPL26, and PRKDC [129]. An association analysis of genotype-by-environment
(GxE) interactions with growth traits in Simmental cattle showed that birth weight was
affected by temperature, while altitude affected weaning and yearling weight. Genes impli-
cated in these traits included neurotransmitters (GABRA4 and GABRB1), hypoxia-induced
processes (PLA2G4B, PLA2G4E, GRIN2D, and GRIK2) and keratinization (KRT15, KRT31,
KRT32, KRT33A, KRT34, and KRT3), all processes that play a role in physiological responses
associated with adaptation to the environment [130].

Enhancing efficiency would reduce the impact of changes in feed availability on
livestock systems and potentially reduce methane production, which contributes to climate
change. Residual feed intake (RFI), that is, the difference between actual feed intake
and the theoretical energy requirements of an animal [131], has been used to select for
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increased feed efficiency (FE) [132,133]. A GWAS of RFI in Nellore cattle identified QTL on
chromosomes 8 and 21 affecting the trait. Putative candidate genes on BTA 8 are CCDC171
and CLCN3 [134], while candidates on BTA11 are DEPP1, expression of which is induced
by fasting, TUBB3 and PTSG1 [135].

A GWAS for temperament scores carried out on crossbred steers in a feedlot identified
five SNP on BTA 1, 24, and 29 and 13 SNP on BTA11 [136]. Functional candidate genes close
to these loci had roles in neural function included synaptotagmin 4 (BTA 24), FAT atypical
cadherin 3 (BTA 29), tubulin tyrosine ligase-like 1 (BTA 5), spermatogenesis associated 17 (BTA
16), stanniocalcin 2 (BTA 20), and GABAA receptor γ 3 (BTA 21). A GWAS of 3,274 Charolais
beef cows detected four significant and 12 suggestive chromosomal regions associated with
several functional and behavioral traits including aggressiveness [137]. A recent GWAS analysis
of 1,370 Brahman cattle clustered in two groups of temperament identified nine SNP located in
intergenic regions near candidate genes ACER3, VRK2, FANCL [138].

4.2. Selection Signatures

Natural or artificial selective pressure causes an increase or decrease in the frequency of
genetic variants in a population. Selection can be positive, balancing, or negative [139]. Positive
selection increases the frequency of fitness-enhancing variants in a population whereas negative
selection removes unfavourable mutations to restore DNA functional integrity [140]. Balancing
selection retains more than one allele of a gene where heterozygotes have higher fitness [141].
The genes in the genomic region in linkage disequilibrium with the genes under selection will
also increase or decrease in frequency through the hitch-hiker effect [142], changing the expected
patterns of molecular variation and giving a “selection signature”.

Tajima’s D statistic (See Box 4) has been used to analyse wild and domestic sheep
data to identify a genomic region involved in the resistance to pneumonia [143]. A scan
of Russian cattle genomes using Tajima’s D statistic detected signatures of selection most
likely resulting from adaptation to cold environments [144]. Fay and Wu’s H statistic has
been used with cattle data to detect signals of recent positive selection involving genes
associated with innate immune response [145].

Signatures of recent selection associated with aggressiveness have been identified on
chromosome X by comparing the Lidia cattle breed, which has been selected for aggres-
sive responses, with two Spanish breeds showing docile behaviour. The most significant
selection signature included the monoamine oxidase A gene (MAOA) [146]. A further
refinement of the analysis identified a variable number of tandem repeats in the gene, with
the Lidia breed having fewer repeats compared with the docile breeds [147]. Favourable
genetic and phenotypic relationships between docility and meat quality, feedlot perfor-
mance, ease of transport and reproductive traits have been reported [148]. Temperamental
animals generally are not as well adapted to stress and have slow growth rates, poor carcass
conformation and poor immune function [149,150]. Differences in docility have also been
found between Bos taurus taurus and Bos taurus indicus cattle (e.g., [151] and between beef
and dairy breeds [152].

Signatures of selection related to feed adaptation have been found in sheep using an
FST approach [153]. Of the seventeen genes under climatic selection, nine were related to
energy metabolism. The strongest selection signal was around TBC1D12, on OAR22, which
plays a role in GTPase regulation. The FST approach was also applied to Siberian cattle pop-
ulations in order to understand the genetic basis of adaptation to cold environments [154].
Results identified several genes that have been implicated in thermal adaptation in cattle,
such as GRIA4, COX17, MAATS1, UPK1B, IFNGR1, DDX23, PPT1, THBS1, CCL5, ATF1,
PLA1A, PRKAG1, and NR1I2.

With regard to hot environments, Li and colleagues [155] investigated selection signa-
tures of bovine heat tolerance in Dehong cattle, a Chinese indigenous zebu breed, using an
FST approach. Results indicated that genes involved in heat shock (HSF1), oxidative stress
response (PLCB1, PLCB4), coat color (RAB31), feed intake (ATP8A1, SHC3) and reproduc-
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tion (TP63, MAP3K13, PTPN4, PPP3CC, ADAMTSL1, SS18L1, OSBPL2, TOX, RREB1, and
GRK2) may play a role in heat adaptation.

Pairwise comparison of genetic differentiation of sheep breeds adapted to different
environments identified selection signatures in the genes MITF, FGF5, MTOR, TRHDE
and TUBB3 that have been associated with high-altitude adaptation [156]. An FST statistic
approach applied to cattle breeds reared in different environments identified several
genes under positive selection for thermal tolerance [157]. HapFLK detected the Nebulin
Related Anchoring Protein gene (NRAP) to be under selection for adaptation to cold
environments [158], ACSS2, ALDOC, EPAS1, EGLN1 and NUCB2 to be under selection for
high-altitude adaptation in cattle [159], and DNAJC28, GNRH1 and MREG to be associated
with heat stress adaptation in sheep [160].

iHS methods have been used to detect signatures of adaptation to environments in
French Charolais cattle, sheep and goats [161–165]. Cross-population EHH-based tests
have been used to detect hot climate adaptation in cattle [166–168] and sheep [169–171],
and hypoxia adaptation in new world camelids [172]. Detecting runs of homozygosity
(ROHs) to find regions containing genes associated with adaptation has been demonstrated
in several domestic species [157,162,163,173,174].

Box 4. Approaches for Selection Signature Detection.

Selection on a locus, whether artificial for production or natural for adaptation, is associated with
the reduction of genetic diversity in the region, creating a “selection signature”. Tajima’s test [175]
is able to detect positive selection sweeps that occurred recently, as it identifies regions with high
numbers of rare, low-frequency variants that are the result of recent mutation [176]. Fay and Wu
statistics [177], in contrast, assess the relationship between ancestral and derived alleles, which
enables both positive and negative recent selection occurring in medium- to high-frequency alleles
to be detected. However, knowledge of ancestral alleles is necessary to apply the method [178].
Various approaches have been used to assess positive and negative selection in populations.
Wright’s fixation index (FST) measures differences in allele frequencies between populations based
on individual loci. FST has been used in many studies of livestock to explore differences among
populations. A more recent approach to analyse population differentiation is the hapFLK met-
ric [179], which improves on single locus statistics by testing haplotype differentiation. hapFLK
corrects frequency estimates, accounting for the genetic relationship between populations using
Reynolds genetic distances.
Selection for a favourable allele of a gene increases the levels of linkage disequilibrium (LD) around
the locus under selection, until recombination occurs to reduce the extent of LD [180]. Selection
signatures can therefore be found by detecting regions of strong LD relative to their prevalence
within a population [181,182]. Alleles at linked loci are referred to as haplotypes. Extended
haplotype homozygosity (EHH) methods measure the decay of haplotype homozygosity as a
function of genetic distance. The integrated Haplotype Score (iHS) [183] is calculated from the
integrals of the observed decay of EHH for the ancestral and derived alleles surrounding the locus
under selection. Divergence between values from the genomic average is indicative of selection.
This approach requires phased data and knowledge of the ancestral state for each allele, and it
has low power when one allele is at high frequency or fixed. Cross-population methods such as
XP-EHH [182] and Rsb [184] calculate EHH profiles between two populations, removing the need
to know the ancestral state. These methods have high power for detecting selective sweeps that
have reached fixation. Selective sweeps generate runs of homozygosity (ROH) when both parents
pass on the same haplotypes that are inherited from one generation to the next [185].

4.3. Local Ancestry Inference

Local ancestry inference (LAI) identifies the ancestors of each genomic region at the
chromosome level. LAI is also described as local ancestry deconvolution or chromosome
painting. Local ancestry information can help to understand fine scale admixture and
the population genetic history, identify recent targets of selection, guide the selection of
reference panels for genotype imputation, and improve the detection power of genetic
association studies of admixed populations [184,186–189]. Identifying the ancestry of
chromosomal segments in admixed individuals facilitates the accurate identification of the
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history of genetic variants under selection [188], particularly where adaptive introgression
has fixed or nearly fixed regions of the genome with specific population ancestry [190].

Most approaches to profile local ancestry divide the genome into windows and assign
ancestry to each window by comparing it against a reference panel [186,188,191–195]. New
methods do not require the explicit definition of a reference population [196,197]. The
most popular algorithms for LAI rely on hidden Markov models (HMM), an extension
of a Markov chain, to identify the transformation of a genomic region from the reference,
which is often not obvious [198]. These methods provide the posterior probabilities for each
possible ancestry state at each ancestry-informative site along the chromosome [189,190].
The estimates obtained depend largely on reference populations; therefore, approaches to
identify convergent signals of ancestry across multiple tests using different references have
been developed [199].

LAI has been widely applied to identify adaptive introgression related to climatic
stressors in livestock. Adaptive introgression from wild to domestic sheep of loci affecting
climatic adaptation and resistance to pneumonia has been identified using LAI [143,199].
Using LAI and multiple-reference adjustments, ancestry components of indicine origin
were found in cattle breeds from Central Italy that are associated with resilience to harsh
environments and climatic conditions [200]. A region of indicine introgression into Italian
local taurine breeds has been identified on BTA18 containing KLHL36, USP10, KIAA0513
and FAM92B, all of which are related with residual feed intake [200]. This introgression
could provide an adaptive advantage enabling animals to use low quality feed efficiently.

Introgression of genes regulating the response to hypoxia from yak into Tibetan
cattle that facilitated the adaptation of the latter to high altitude was also identified by
LAI [201]. Similarly, adaptive introgression of genes related to oxygen transportation
from Argali sheep to Tibetan domestic sheep may be a key factor conferring high-altitude
resilience [202]. Local ancestry signals in African cattle have identified the genomic com-
ponents of indicine cattle related to heat tolerance and water reabsorption, along with
innate-immune resistance to tick and tick-borne diseases [203]. LAI tests have provided
evidence of adaptive introgression between llama and alpaca for coat colour, fibre charac-
teristics, and adaptation to high altitude and harsh environment [172].

4.4. Landscape Genomics

Landscape genomics explores the interaction between the genome and the environ-
ment to better understand evolution by combining landscape ecology and population
genetics [204,205]. Two advances enabled landscape genomics to be realized. The first
was the development of Geographic Information Systems (GIS) [206], which facilitated
the overlay of diverse geo-referenced information, in this case genetic and environmental
data. The second was the availability of large numbers of genetic markers, specifically
single nucleotide polymorphisms, that are easily assayed. The development of the soft-
ware MatSAM to compare a large number of allele frequencies with eco-climatic variables
brought these two advances together as landscape genomics [207]. The MatSAM soft-
ware [208] has been successfully used for landscape genomics analyses of plant and animal
species, including sheep [207], goats [209] and fish [210]. These studies used GIS to store
both genetic and environmental variables retrieved from open access databases to create
gene–environment matrices that are processed by logistic regressions. Several software
programs using different models have been developed for land-scape genomic analysis;
improvements of these have an ever-increasing capability to efficiently analyse big data
sets of genomic and environmental variables (see Box 5).

Landscape genomics approaches were used to understand the genetic adaptation
of South African goats, finding that climatic variables explained 17% of their overall
diversity. Using SAM software (see Box 5 and [207]), 843 SNPs were identified that
were associated with longitude, while LFMM software [211] found that 714 SNPs were
associated with temperature and precipitation [212], with only one locus in common that
included DGKB. These SNPs were close to genes involved in 205 biological pathways,
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all of which are potentially related to adaptation. Among the genes identified, several
have been associated with thermoregulation in hot environments (e.g., PLCB1). In the
analysis of a goat database of more than 1000 animals covering 33 Italian populations
using landscape genomics methods and LFMM [213], identified many loci putatively
associated with environmental variables, although there was no overlap in loci identified
by each of the methods. Samβada identified 62 genes associated with temperature or
precipitation; among these, RYR3 has been associated with mean temperature and ANK3
and BTRC with longitude [214]. The LFMM analysis identified four SNPs associated
with Mean Diurnal Range and Mean Temperature. These SNP were near NBEA, located
within a region involved with wool production in sheep [215], and RHOBTB1, which is
known to be associated with meat quality in cattle [216]. As observed before, methods
implemented in Samβada and LFMM produce non-overlapping results. The two software
are suited to the analysis of population having specific genetic structure (see Box 5) and
their use is suggesed as complementary rather than alternative tools. Colli et al. [217]
applied landscape genomics software based on the SAM approach to analyse 43 European
and West Asian goat breeds. Using AFLP markers, four loci were identified that were
significantly associated with diurnal temperature range, frequency of precipitation, relative
humidity and solar radiation.

A landscape genomic analysis of 57 sheep breeds using the SAM approach found that
the DYMS1 microsatellite locus was associated with the number of wet days, which largely
affects parasite load [207]. In an earlier study this locus was shown to be associated with parasite
resistance [218].

Box 5. Landscape Genomics Software.

With the availability of increasing numbers of measures of environmental variables and an increasing number of genetic mark-
ers, the MatSAM software [208] was developed to process many simultaneous univariate association models. Samβada [213]
is able to compute univariate and multivariate logistic regressions, integrate and make an intelligent selection of significant
models, calculate pseudo R2, Moran’s I, and Geographically Weighted Regressions. This software has High Performance
Computing (HPC) capacities to handle the large datasets created when several million SNPs, produced by high-throughput
sequencing, are combined with hundreds of environmental variables. Samβada is also supported by R-SamBada [219], an
R software package that provides a complete pipeline for landscape genomic analyses, from the retrieval of environmental
variables at sampling locations to gene annotation using the Ensembl genome browser.
Other landscape genomics software include BAYENV [220], which uses the Bayesian method to compute correlations be-
tween allele frequencies and ecological variables, taking into account differences in sample size and population structure;
LFMM [211,221], which identifies gene-environment associations and SNPs with allele frequencies that correlate with clines
of environmental variables; and SGLMM [222], which extends the BAYENV approach [223] by using a spatially explicit model
and calculating inferences with an Integrated Nested Laplace Approximation and Stochastic Partial Differential Equation
(SPDE). BayPass [224] builds on BAYENV to capture linkage disequilibrium information. BAYESCENV [225] produces an FST-
based genome scan, taking into account environmental differences between populations. The latest version of LFMM [226]
improves on both scalability and speed with respect to other GEA methods using a least-squares approach to estimate co-
founders. Moreover, LFMM uses several categories of genomic data which are not restricted to genotypes.
Landscape genomics studies often use population genomics software (e.g., LOSITAN based on the FDist model [227,228]) to
compare the sets of candidate loci obtained from different approaches: see BayeScan [229] and Bayenv [223]. A comparison of
results allows for consolidation, as the accuracy of methods is known to differ (see, e.g., [213]). Samβada / R–SamBada [219]
gives reliable results when the population structure is weak, while LFMM2 [226] is better suited to detect selection signa-
tures in well-structured populations. Analyses of simulated data using, e.g., CDPOP [230] is usually advised to demonstrate
the effectiveness of the method before moving to the analysis of empirical data (see, e.g., [211,213,231]). GEONOMICS, a
Python package, performs forward-time, individual-based, continuous-space population genomic simulations on complex
landscapes [232]. GEONOMICS includes several analytical steps using models of a landscape with one or more environmen-
tal layers (geotiff files as input), each of which can undergo environmental changes, as well as species having genomes with
realistic architecture and associated phenotypes. Species undergo non-Wright–Fisher evolution in continuous space, with lo-
calized mating and mortality. The results produced are useful for a wide variety of theoretical and empirical purposes such as
species conservation and management.

4.5. Artificial Intelligence and Machine Learning Approaches

With advances in genomic technology and more sophisticated sensing systems, “big
data” sets are being created and a large amount of data needs to be stored every day [233].
These data sets will potentially reveal changes in genomes that adapt animals to a wide
range of conditions and environments. However, the information is a mixture of homo-
geneous and heterogeneous data types where the relationships among parameters may
be hidden or difficult to identify. Artificial Intelligence (AI) and Machine Learning (ML)
methods are increasingly used to extract information from this type of data to overcome
the limits of traditional linear models (250, 251) (see Box 6). ML and AI have not yet been
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fully applied to study adaptation to climate change in livestock; however, the role of big
data and machine learning will become increasingly important for modern farming [234].

ML methods have been used in the quest for regions associated with adaptation, in
particularly to detect de novo mutations and selective sweeps for previously segregating
variants in humans [235]. The S/HIC Deep Learning (DL) model has shown that most
human mutations are neutral in populations, and that those conferring an adaptive ad-
vantage only rise in frequency when a change in the environment gives advantages to
individuals carrying a particular mutation [236]. This approach has been used to identify
genes associated with metabolism in a southern African ethnic groups using the SWIF(r)
DL algorithm [237]. Variants of these genes arose thousands of years ago to store fat when
food was scarce.

There are a few examples of the use of ML in livestock genetics and breeding [196,238,239],
and new DL genetic models are only just being tested [240–243]. The identification of SNPs
directly associated with candidate genes affecting growth traits in Brahman cattle was more
successful using ML Gradient Boosting Machine (GBM) than Random Forest statistical meth-
ods [241]. ML algorithms have been used together with RNA-Seq expression data to identify
genes associated with feed efficiency in pigs, and to classify animals’ phenotypic extreme for
residual feed intake [244].

Box 6. Artificial Intelligence and Machine Learning.

Artificial Intelligence (AI) uses algorithms that automate the decision process [245], while Machine
Learning (ML) uses AI to automatically learn complex relationships and patterns in data [246,247].
ML algorithms may be unsupervised or supervised. The former explores the dataset structure with-
out prior knowledge of data organization, while the latter uses prior knowledge to train the model
and predict the outcome in a test dataset [248]. ML algorithms are adapted to explore nonlinear
relationships [249]. Deep learning (DL) creates multiple processing layers (neural networks), which
mimic the structure of a human brain, to extract information and learn from the input data. DL is
being used to discover intricate structures in large datasets [246,250]. However, the neural network
models are a “black box” as they are hidden as they develop. Tools are being developed to dissect
the layers of the models developed to understand the neural network process; one example are the
saliency maps [251,252].
ML methods mainly focus on prediction, while classical statistical methods rely on inference [253].
ML has been used to recognize the location of specific sequence elements (i.e., splice sites, promoters,
etc.) and to combine genomic elements to identify and annotate genomic features, e.g., to identify
UTR, introns, and exons, and to functionally annotate genes [235]. For example, S/HIC (https:
//github.com/kern-lab/shIC) is an ML classifier developed to detect targets of adaptive natural
selection from whole genome sequencing data.
Efficient DL software tools such as Tensorflow and Keras Python libraries, and the availability of
supercomputing using graphics processing unit technology (GPU), have opened the way to the
integration of multi-omics big data with environmental variables.

https://github.com/kern-lab/shIC
https://github.com/kern-lab/shIC
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Table 1. Software for genome-wide analyses.

Software Method Application Ref. Link

Arlequin Tajima’s D Selection signatures [254] http://cmpg.unibe.ch/software/arlequin35/

BayeScan FST
Selection Signatures,
Landscape genomics [229] http://cmpg.unibe.ch/software/BayeScan/

Bcftools ROH Selection signatures [255] https://github.com/samtools/bcftools

DnaSP Tajima’s D and Fay and Wu’s
statistic Selection signatures http://www.ub.edu/dnasp/

Hapbin EHH Selection signatures [256] https://github.com/evotools/hapbin

hapFLK hapFLK Selection signatures [179] https:
//forge-dga.jouy.inra.fr/projects/hapflk

HierFstat (R package) FST Selection signatures [257] https://cran.r-project.org/web/packages/
hierfstat/index.html

KING ROH Selection signatures [258] https://www.kingrelatedness.com/

PLINK FST, ROH GWAS, Selection
Signatures [259] https://www.cog-genomics.org/plink/2.0/

https://www.cog-genomics.org/plink/

PopGenome Tajima’s D Selection signatures [260] https://cran.r-project.org/web/packages/
PopGenome/index.html

PoPoolation Tajima’s D Selection signatures [261] https://sourceforge.net/p/popoolation/
wiki/Main/

rehh (R package) EHH Selection signatures [262] https://cran.r-project.org/web/packages/
rehh/index.html

Selscan EHH Selection signatures [263] https://github.com/szpiech/selscan

VariScan Tajima’s D Selection signatures [264] http://www.ub.edu/softevol/variscan/

VCFtools FST, Tajima’s D Selection signatures [265] http://vcftools.sourceforge.net/

EMMAX GWAS based on variance
component model GWAS [266] http://genetics.cs.ucla.edu/emmax

GCTA GWAS based on genome-wide
complex trait analysis GWAS [267] http://gump.qimr.edu.au/gcta

BayesR Bayesian mixture model GWAS [268] http://www.cnsgenomics.com/software/

MatSAM Logistic regression Landscape genomics [208] www.econogene.eu/software/sam/

Samβada, R.SamBada (R
package)

GEA based on logistic
regression/spatial autocorrelation Landscape genomics [213,219]

https://github.com/Sylvie/sambada/
releases/tag/v0.8.3https:

//cran.r-project.org/package=R.SamBada

BAYENV GEA based on Bayesian regression Landscape genomics [220] https://gcbias.org/bayenv/

LFMM2 (R package) GEA based on latent factor mixed
models Landscape genomics [221,226] https://bcm-uga.github.io/lfmm/

SGLMM GEA based on allele-environment
association analysis Landscape genomics [222] -

BayPass
GEA corrected for the covariance
structure among the population

allele frequencies
Landscape genomics [224] http://www1.montpellier.inra.fr/CBGP/

software/baypass/

BAYESCENV GEA based on FST genome-scan Landscape genomics [225] https:
//github.com/devillemereuil/bayescenv

LOSITAN FST Landscape genomics [227] https://mybiosoftware.com/lositan-1-0-0-
selection-detection-workbench.html

PCAdmix Supervised LAI Local Ancestry Inference [186] https:
//sites.google.com/site/pcadmix/home

Tractor LA-aware regression model Local Ancestry Inference [187] https://github.com/eatkinson/Tractor

LAMP LAI accounting for recombination Local Ancestry Inference [188] http://lamp.icsi.berkeley.edu/lamp/

MOSAIC (R package) Unsupervised LAI Local Ancestry Inference [193] https://maths.ucd.ie/~mst/MOSAIC/

RFMix LAI based on conditional random
field Local Ancestry Inference [194] https://github.com/slowkoni/rfmix

Loter LAI for species other than humans Local Ancestry Inference [195] https://github.com/bcm-uga/Loter

GHap (R package) Unsupervised LAI Local Ancestry Inference [196] https://cran.r-project.org/package=GHap

PSIKO2 Unsupervised LAI Local Ancestry Inference [197] https://www.uea.ac.uk/computing/psiko

SWIF(r) Probabilistic method to detect
selective sweeps Deep Learning [237] https:

//github.com/ramachandran-lab/SWIFr

http://cmpg.unibe.ch/software/arlequin35/
http://cmpg.unibe.ch/software/BayeScan/
https://github.com/samtools/bcftools
http://www.ub.edu/dnasp/
https://github.com/evotools/hapbin
https://forge-dga.jouy.inra.fr/projects/hapflk
https://forge-dga.jouy.inra.fr/projects/hapflk
https://cran.r-project.org/web/packages/hierfstat/index.html
https://cran.r-project.org/web/packages/hierfstat/index.html
https://www.kingrelatedness.com/
https://www.cog-genomics.org/plink/2.0/https://www.cog-genomics.org/plink/
https://www.cog-genomics.org/plink/2.0/https://www.cog-genomics.org/plink/
https://cran.r-project.org/web/packages/PopGenome/index.html
https://cran.r-project.org/web/packages/PopGenome/index.html
https://sourceforge.net/p/popoolation/wiki/Main/
https://sourceforge.net/p/popoolation/wiki/Main/
https://cran.r-project.org/web/packages/rehh/index.html
https://cran.r-project.org/web/packages/rehh/index.html
https://github.com/szpiech/selscan
http://www.ub.edu/softevol/variscan/
http://vcftools.sourceforge.net/
http://genetics.cs.ucla.edu/emmax
http://gump.qimr.edu.au/gcta
http://www.cnsgenomics.com/software/
www.econogene.eu/software/sam/
https://github.com/Sylvie/sambada/releases/tag/v0.8.3https://cran.r-project.org/package=R.SamBada
https://github.com/Sylvie/sambada/releases/tag/v0.8.3https://cran.r-project.org/package=R.SamBada
https://github.com/Sylvie/sambada/releases/tag/v0.8.3https://cran.r-project.org/package=R.SamBada
https://gcbias.org/bayenv/
https://bcm-uga.github.io/lfmm/
http://www1.montpellier.inra.fr/CBGP/software/baypass/
http://www1.montpellier.inra.fr/CBGP/software/baypass/
https://github.com/devillemereuil/bayescenv
https://github.com/devillemereuil/bayescenv
https://mybiosoftware.com/lositan-1-0-0-selection-detection-workbench.html
https://mybiosoftware.com/lositan-1-0-0-selection-detection-workbench.html
https://sites.google.com/site/pcadmix/home
https://sites.google.com/site/pcadmix/home
https://github.com/eatkinson/Tractor
http://lamp.icsi.berkeley.edu/lamp/
https://maths.ucd.ie/~mst/MOSAIC/
https://github.com/slowkoni/rfmix
https://github.com/bcm-uga/Loter
https://cran.r-project.org/package=GHap
https://www.uea.ac.uk/computing/psiko
https://github.com/ramachandran-lab/SWIFr
https://github.com/ramachandran-lab/SWIFr
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5. Conclusions

To maintain animal welfare and as a consequence productivity and production ef-
ficiency, breeds have to be well adapted to the environmental conditions in which they
are kept. Rapid climate change inevitably calls for the use of various countermeasures to
manage animals appropriately. Temperature mitigation methods (shaded area, water wet-
ting, ventilation, air conditioning) are possible solutions; however, these can only be used
when animals are kept in shelters and are not applicable to range-type farming systems.
Most structural solutions to control the environment of animals have a high cost, and many
have energy requirements that further contribute to climate change. Therefore, addressing
livestock adaptation by breeding animals that are intrinsically more tolerant to extreme
conditions is a more sustainable solution. Decreasing stress and increasing animal welfare
is important for farmers and the general public. Animals stressed by high temperatures
may be less able to cope with other stressors such as pollutants, dust, restraint, social
mixing, transport, etc., that further affect welfare and productivity. Innovation in sensors
and linking these into the “internet of things” (IoT) to collect and exchange data is increas-
ing our ability to record environmental variables and animal welfare status and provide
input to systems dedicated to the control of environmental conditions and provision of
early warning of discomfort in individual animals. In the longer term, collecting such
data will contribute to understanding the genetics underpinning tolerance and adaptation
to environmental and other stressors in order to select animals better suited to different
conditions. The resulting increase in efficiency will have additional benefits in terms of
reducing greenhouse gas emissions, particularly methane from ruminants, which currently
make a significant contribution to climate change.

Breed substitution by introducing breeds known to have particular resilience, e.g.,
to drought, temperature extremes or disease, may be a solution. This approach would
facilitate a rapid response to climate change, although it is not ideal as breeds more tolerant
of hot climates generally have low productivity. Additionally, imported breeds may not
adapt to local conditions such as available feed resources and disease challenge.

Crossbreeding between highly productive and heat tolerant breeds is an approach
that is currently used in tropical areas including Australia, the southern USA and Brazil,
where crossing productive taurine breeds with heat adapted indicine breeds facilitates
improved production in extreme conditions. Selection of these cross-bred populations
has produced stable breeds that show good productivity and adaptation, such as the
Brangus from the USA [269] and the Australian Droughtmaster [270]. O’Neil et al. [271]
have reviewed the use of crossbred lines in tropical high tick challenge areas of Australia.
However, crossbreeding programs should be properly planned, organised and monitored,
as indiscriminate crosses may cause the genetic erosion of local breeds and the loss of
their adaptation.

Accelerated selection for thermal tolerance and resilience to new endemic diseases
is also a possible sustainable solution. In this case, genomics plays a key role together
with phenotype recording and the collection of epidemiological and environmental data.
Research is approaching the challenging task of identifying genes having adaptive value
using a range of methods, including those described in this review. Specific variants
of major genes exist in local genetic resources, as demonstrated by the SLICK mutation
associated with heat tolerance. However, identifying causal genes and variants is difficult,
requiring large data sets which are often not available or affordable for livestock, and a
focused effort to refine and test candidate genes. Therefore, most studies have simply
localized genetic effects to chromosomal regions or quantitative trait loci (QTL) in genome-
wide association studies. Additionally, it is now clear that most adaptation traits have
complex genetic control, making the genetic basis difficult to unravel. Nevertheless,
markers having significant effects can be used in selection programmes using marker
assisted selection or by weighting particular SNPs within QTL regions in genomic selection
estimates. Although genomics is presently only scratching the surface of the control
mechanism of these traits, comparison between methods, studies, breeds and even species
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is starting to reveal that morphology, energy and lipid metabolism, and the immune system
are key factors in adaptation, with some genes being consistently identified as carrying
variants modulating adaptation. The identification of these genes confirms the importance
of the conservation of local genetic resources as reservoirs of useful alleles. The evaluation
and improvement of these breeds or the transfer of adaptive variants into highly selected
breeds are the next steps to better match livestock to harsh conditions while maintaining
productivity. These steps may be accelerated by marker-assisted or genomic selection, and
even more rapidly by novel tools such as gene editing where such approaches are socially
accepted. Parallel breeding for adaptation to climate change and the mitigation of the
impact of livestock on climate change is probably the hardest challenge that the livestock
sector has ever faced, but it is now urgent. The challenge can only be won if research,
industry, decision makers and funders join forces with the objective of satisfying the rights
future generations to a healthy diet and a clean planet.
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